Explainable Reinforcement Learning: Enhancing Trust and Interpretability in Autonomous Systems

Authors

  • Dr. Mehak Sharma

Abstract

Reinforcement learning (RL) has achieved remarkable success in robotics, gaming, and autonomous decision-making, yet its lack of transparency hinders widespread adoption. This paper explores techniques for making RL models more interpretable, including attention mechanisms, policy visualization, and human-in-the-loop learning. We introduce an explainable RL framework that provides real-time insights into decision-making processes while maintaining optimal performance. Case studies in self-driving cars, healthcare robotics, and financial trading illustrate the impact of explainability on user trust and safety. Challenges related to interpretability-performance trade-offs, generalization, and real-world validation are also discussed.

References

Deekshith, A. (2021). Data Engineering for AI: Optimizing Data Quality and Accessibility for Machine Learning Models. International Journal of Management Education for Sustainable Development, 4(4), 1-33.

Deekshith, A. (2023). Scalable Machine Learning: Techniques for Managing Data Volume and Velocity in AI Applications. International Scientific Journal for Research, 5(5).

Deekshith, A. (2020). AI-Enhanced Data Science: Techniques for Improved Data Visualization and Interpretation. International Journal of Creative Research In Computer Technology and Design, 2(2).

Deekshith, A. (2019). Integrating AI and Data Engineering: Building Robust Pipelines for Real-Time Data Analytics. International Journal of Sustainable Development in Computing Science, 1(3), 1-35.

Boppiniti, S. T. (2022). Exploring the Synergy of AI, ML, and Data Analytics in Enhancing Customer Experience and Personalization. International Machine learning journal and Computer Engineering, 5(5).

Boppiniti, S. T. (2023). Data Ethics in AI: Addressing Challenges in Machine Learning and Data Governance for Responsible Data Science. International Scientific Journal for Research, 5(5).

Boppiniti, S. T. (2020). Big Data Meets Machine Learning: Strategies for Efficient Data Processing and Analysis in Large Datasets. International Journal of Creative Research In Computer Technology and Design, 2(2).

Pillai, S. E. V. S., Polimetla, K., Avacharmal, R., Perumal, A. P., & Gopal, S. K. (2023). Beyond the Bin: Machine Learning-Driven Waste Management for a Sustainable Future. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 11(1), 16-27.

Boppiniti, S. T. (2021). Real-Time Data Analytics with AI: Leveraging Stream Processing for Dynamic Decision Support. International Journal of Management Education for Sustainable Development, 4(4).

Boppiniti, S. T. (2019). Machine Learning for Predictive Analytics: Enhancing Data-Driven Decision-Making Across Industries. International Journal of Sustainable Development in Computing Science, 1(3).

Balantrapu, S. S. (2022). Evaluating AI-Enhanced Cybersecurity Solutions Versus Traditional Methods: A Comparative Study. International Journal of Sustainable Development Through AI, ML and IoT, 1(1), 1-15.

Balantrapu, S. S. (2022). Ethical Considerations in AI-Powered Cybersecurity. International Machine learning journal and Computer Engineering, 5(5).

Balantrapu, S. S. (2021). The Impact of Machine Learning on Incident Response Strategies. International Journal of Management Education for Sustainable Development, 4(4), 1-17.

Balantrapu, S. S. (2019). Adversarial Machine Learning: Security Threats and Mitigations. International Journal of Sustainable Development in Computing Science, 1(3), 1-18.

Pillai, S. E. V. S., Polimetla, K., Avacharmal, R., & Perumal, A. P. (2022). Mental health in the tech industry: Insights from surveys and NLP analysis. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 10(2), 22-33.

Published

2023-10-13

How to Cite

Sharma, D. M. (2023). Explainable Reinforcement Learning: Enhancing Trust and Interpretability in Autonomous Systems. British Journal of Multidisciplinary Research , 5(5). Retrieved from https://journals.injmr.com/index.php/BJMR/article/view/19

Issue

Section

Articles